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Seed Dormancy

« Seed dormancy is the failure of a viable seed to
germinate when provided with conditions normally
conducive to germination (water, temperature, etc.).

« Seed dormancy as an adaptive mechanism for
successful propagation is generally sensitive to
environmental conditions, particularly temperature, light
and nutrients (i.e., nitrate).

NON-DORMANT =—> GERMINATION=> SEEDLING
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Bewley et al. (2013) Seeds: Physiology of Development, Germination and Dormancy. Springer.



Thermoinhibition at High Temperatures
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Argyris et al. (2005) Theor. Appl. Genet. 111: 1365-1376.




Soil Temperatures Often Exceed 30°C in CA and AZ
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germination.

Over 95% of US lettuce production
occurs in California and Arizona.

In November through March, production
is focused in the desert regions of
Imperial Valley, CA and Yuma, AZ.
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Natural Variation for Thermoinhibition
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Recombinant Inbred Line Population
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QTL Analysis — Phenotypic Data

* Phenotypes analyzed

in RILs for QTL: ¥

— Germination/dormancy ¥ b $
« Temperature response Y %‘ ----- ¥
» Light and darkness i ¥

— Seed traits (SWT, SOC) ¥

— Seedling characteristics 23 ==0 AAI =1

* Root and shoot growth




High Resolution Mapping of Htg6.1 in Lettuce
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Hormone Balance Is Involved in Seed Dormancy

Ambi i
Dormancy mbient environment Dormancy

induction () () breaking

GA synthesis (GA3ox1)
ABA degradation (CYP707A2)

ABA sensitivity

ABA signalling (ABREs) GA signalling

Dormant l Cycling l» Nondormant —» Germination

Finch-Savage and Leubner-Metzger (2006) New Phytologist 171:501-523.
Cadman et al. (2006) Plant Journal 46: 805-822.



LSNCED4 Expression and ABA Content
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LSNCED4 expression and ABA content remain elevated only in seeds of
the Salinas variety imbibed at 35°C, which exhibit thermoinhibition.

Argyris et al. (2008) Plant Physiol. 148: 926-947.



Functional Complementation of UC96US23
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Functional Complementation of UC96US23

Transform pSal::LsNCED4
into UC96US23

Salinas seeds UC96US23 seeds
T > 30°C
LsSNCED4 expression high pSal::LsNCED4 expression high
ABA biosynthesis ABA biosynthesis
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of germination germination



Silencing of Salinas LsNCED4
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LSNCED4 Expression Is Required for Thermoinhibition

A UC+Sal-NCED4 | Sal-CTL
20°C : 35°C
UC-CTL | Sal-RNAig8-4

Transferring Sal-NCED4 under its own promoter into UC makes it susceptible to
thermoinhibition, while silencing NCED4 in Sal makes it thermotolerant.

Huo et al. (2013) Plant Cell 25: 884-900.




TILLING Mutants of LsNCED4

Stop @ MSll
* 460 * 480
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MS2
580 l * 600
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AtNCEDGo6 : AKVDIGVSFYGRFGGEPCFVP
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G = E
Glycine = Glutamate

In cooperation with Arcadia Biosciences, an induced mutant population of
lettuce cv. Desert Storm was TILLED to identify mutations in LsNCEDA4.
Three were identified, one stop codon and two missense mutations.



TILLING Mutants of LsNCED4
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Huo et al. (2013) Plant Cell 25: 884-900.




TILLING Mutants of LsNCED4

By sequence homology with maize VP14, the Stop and MS1 mutations are near
a histidine residue that is important for binding an iron atom that is involved in
the active site of the enzyme. The MS2 mutation is not near the active site.

Messing et al. (2010) Plant Cell 22: 2970-2980. USDA
Huo et al. (2013) Plant Cell 25: 884-900. = —
r i




Germplasm for High Temperature Tolerance

Parent line source UC96US23

Native UC allele of NCED4 introgressed into cultivated
Salinas background

Mutants in NCED4

RNAI-NCED4 silenced line

See poster session also



A Second HTG QTL

We are mapping
another QTL
involved in regulating
high temperature
germination in a
lettuce population
derived from a cross
between P1251246
(primitive L. sativa) x
cv. Salinas
(population
developed by USDA
at Salinas). A major
QTL has been
identified on
Chromosome 9, and
fine mapping is in
progress.
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Environmental Sensitivity of Seed Dormancy
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The temperature during seed development can influence the subsequent thermosensitivity
of the seeds during germination. We are pursuing this GXE interaction to identify loci and
genes that control the seed dormancy response to maternal environment during seed
development.

Mohan Niroula, unpublished results; see poster session
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Environmental Sensitivity of Seed Dormancy
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Mohan Niroula, unpublished results; see poster session

After growing the RIL population 4
environments and conducting seed
germination tests at warm temperatures,
we mapped both the germination capacity
and the variation in the germination
capacity for a given RIL across
environments.

Using either the standard deviation across
environments or a G x E analysis, a major
QTL was found that collocated with the
major trait for HTG in each environment.

Once a candidate gene is identified, its
modification may improve both HTG and

variability across environments. O

WRSPRG



Mutation ldentification by Bulked Segregant Analysis
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Mutation ldentification by Bulked Segregant Analysis
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Mutation ldentification by Bulked Segregant Analysis
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The percentage of mutant alleles per 1 MB bin was calculated across the genome.
Peaks indicating a higher frequency of homozygous mutant alleles in the bulks would
be candidates for the causal gene. Analysis of both mutant bulks identified a locus on
chromosome 3.

Mapping by Rijk Zwaan also independently located the causal mutations in this region
of chromosome 3.

Luca Comai, UCD Eric Coppoolse Rrikzwaan



Q2 Seed Respiration Instrument

www.astecglobal.net



Q2 Seed Respiration Instrument

An oxygen-sensitive fluorescent dye is placed on a membrane (or
vial cap) and sealed over a well containing an imbibed seed. The
fluorescence of the dye is quenched by oxygen, so when
illuminated by actinic light, the fluorescence increases as the seed
consumes the oxygen in the well or vial. This provides a way to
sample oxygen consumption over time of individual seeds.

www.astecglobal.net



Single-Seed Respiration Measurements

A light source/fluorescence
sensor unit moves over the
plates at specified intervals
and records the oxygen
depletion time courses for
each well.

: ?Mod Graph [Run =31, Plate = 5]
&b Print Scaleinhowrs 5 5

Tomato - 081110

The instrument records 1on (R bt
the oxygen level in each I Sl
well over time as it is
depleted due to seed
respiration.
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Germination and Respiration Time Courses

100

80

60

40

Germination (%)

20

100

80

60

Seeds reaching 50% O2 (%)

Dahal and Bradford (1994) Seed Sci. Res. 4: 71-80.

| A Germination

Time (hours)

Bello and Bradford, unpublished

Tomato seed respiration rates in
response to temperature were
described remarkably well by the
population-based thermal time model
(Dahal and Bradford, 1994).

The points are respiration data for
each seed and solid lines indicate
the predicted time courses based on
the model.
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Aging Effects on Germination and Respiration

A Germination

Time (h)

Bradford et al. (1993) J. Exp. Bot. 44: 1225-1234.

Bello and Bradford, unpublished
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Germination and respiration time courses
for radish seeds aged at 47% RH and
50°C for 0, 45, 66 or 80 days.

The respiration “time courses” matched
well to the effects of aging on
germination.

The aging-time model (Bradford et al.,
1993) matched this data well (solid lines
are model predictions).

Respiration time courses could be a
sensitive and efficient way to detect and
monitor early stages of seed deterioration
during storage. It would enable the use of
germination rates without labor-intensive
repeated observations.

American Seed
Research Foundation



Drying Beads® for Seed Drying
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FlexiDry® Continuous dry air source
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FlexiDry - concept drawing

|| Cylinder 1: active - used for drying the
incoming air

Cylinder 2: regeneration of beads

Cylinder 3: cooling of regenerated air
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http://www.dryingbeads.org/

Videometer and CF Mobile
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Image analysis applications for seed quality
See presentation in poster session
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